baekjoon 14940:쉬운 최단거리
14940번 쉬운 최단거리
접근
bfs 거꾸로 접근하면 된다.
조금 변형해서 상하좌우로 탐색하도록 했다.
코드
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
#include <iostream>
#include <queue>
using namespace std;
int main(){
ios::sync_with_stdio(false);
cin.tie(0); cout.tie(0);
int n, m;
cin >> n >> m;
vector<vector<int>> graph(n, vector<int>(m, 0));
vector<vector<bool>> visited(n, vector<bool>(m, false));
vector<vector<int>> dist(n, vector<int>(m, -1));
int s1, s2;
queue<pair<int, int>> q;
for(int i=0; i<n; i++){
for(int j=0; j<m; j++){
int temp;
cin >> temp;
if(temp == 2){
s1 = i;
s2 = j;
}
else if(temp == 0){
dist[i][j] = 0;
}
graph[i][j] = temp;
}
}
visited[s1][s2] = true;
dist[s1][s2] = 0;
q.push({s1, s2});
while(!q.empty()){
pair<int, int> curr = q.front();
q.pop();
if(curr.first-1 >= 0 && graph[curr.first-1][curr.second] == 1 && !visited[curr.first-1][curr.second]){
visited[curr.first-1][curr.second] = true;
dist[curr.first-1][curr.second] = dist[curr.first][curr.second] + 1;
q.push({curr.first-1, curr.second});
}
if(curr.first+1 < n && graph[curr.first+1][curr.second] == 1 && !visited[curr.first+1][curr.second]){
visited[curr.first+1][curr.second] = true;
dist[curr.first+1][curr.second] = dist[curr.first][curr.second] + 1;
q.push({curr.first+1, curr.second});
}
if(curr.second-1 >= 0 && graph[curr.first][curr.second-1] == 1 && !visited[curr.first][curr.second-1]){
visited[curr.first][curr.second-1] = true;
dist[curr.first][curr.second-1] = dist[curr.first][curr.second] + 1;
q.push({curr.first, curr.second-1});
}
if(curr.second+1 < m && graph[curr.first][curr.second+1] == 1 && !visited[curr.first][curr.second+1]){
visited[curr.first][curr.second+1] = true;
dist[curr.first][curr.second+1] = dist[curr.first][curr.second] + 1;
q.push({curr.first, curr.second+1});
}
}
for(int i=0; i<n; i++){
for(int j=0; j<m; j++){
cout << dist[i][j] << " ";
}
cout << "\n";
}
return 0;
}
배운 점
bfs 응용방법을 배운 것 같다.
This post is licensed under CC BY 4.0 by the author.